The Flavonoid Pathway in Tomato Seedlings: Transcript Abundance and the Modeling of Metabolite Dynamics
نویسندگان
چکیده
Flavonoids are secondary metabolites present in all terrestrial plants. The flavonoid pathway has been extensively studied, and many of the involved genes and metabolites have been described in the literature. Despite this extensive knowledge, the functioning of the pathway in vivo is still poorly understood. Here, we study the flavonoid pathway using both experiments and mathematical models. We measured flavonoid metabolite dynamics in two tissues, hypocotyls and cotyledons, during tomato seedling development. Interestingly, the same backbone of interactions leads to very different accumulation patterns in the different tissues. Initially, we developed a mathematical model with constant enzyme concentrations that described the metabolic networks separately in both tissues. This model was unable to fit the measured flavonoid dynamics in the hypocotyls, even if we allowed unrealistic parameter values. This suggested us to investigate the effect of transcript abundance on flavonoid accumulation. We found that the expression of candidate flavonoid genes varies considerably with time. Variation in transcript abundance results in enzymatic variation, which could have a large effect on metabolite accumulation. Candidate transcript abundance was included in the mathematical model as representative for enzyme concentration. We fitted the resulting model to the flavonoid dynamics in the cotyledons, and tested it by applying it to the data from hypocotyls. When transcript abundance is included, we are indeed able to explain flavonoid dynamics in both tissues. Importantly, this is possible under the biologically relevant restriction that the enzymatic properties estimated by the model are conserved between the tissues.
منابع مشابه
تغییرات محتوای سولفورافان و فعالیت برخی آنزیمهای آنتیاکسیدان گیاهچههای ازمک (Lepidium draba L.) در پاسخ به جاسمونات
Sulforaphane is an isothiocyanate which derived of glucoraphanin (a kind of glucosinolate) under hydrolysis of myrosinase enzyme, has shown various pharmaceutical properties such as anticancer activity in human. This glucosinolate abundantly found in Lepidium draba L. of Brassicaceae family. The goal of this research was investigation of the variation in sulforaphane, total flavonoid and anthoc...
متن کاملTranscriptional Response of Structural and Regulatory Genes Involved in Isoprene Biosynthesis and its Relation to Essential Oil Biosynthesis in Response to Salicylic Acid and Abscisic Acid in Mentha piperita L.
Background: In peppermint, precursors for the biosynthesis of monoterpenes are provided by plastidial methyl-erythritol-phosphate (MEP) pathways. Objective: In order to increase our understanding of terpene metabolism in M. piperita, the effect of salicylic acid (SA) and abscisic acid (ABA) in the modulation of expression pattern of genes involved in essential oil biosynthesis and secretion wa...
متن کاملParameter estimation in tree graph metabolic networks
We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Mich...
متن کاملCold tolerance in Osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes
Our containment trials have established cold tolerance in Nicotiana tabacum osmotin (Nt Osm) transgenic tomato (Solanum lycopersicum L. cv. Pusa Ruby). Though, the stress tolerance mechanisms have been studied at physio-biochemical levels, molecular mechanisms underlying the tolerant response are still not well studied. Therefore, quantitative transcript expression of Osmotin and other stress r...
متن کاملDifferential tomato transcriptomic responses induced by pepino mosaic virus isolates with differential aggressiveness.
Pepino mosaic virus (PepMV) is a highly infectious potexvirus and a major disease of greenhouse tomato (Solanum lycopersicum) crops worldwide. Damage and economic losses caused by PepMV vary greatly and can be attributed to differential symptomatology caused by different PepMV isolates. Here, we used a custom-designed Affymetrix tomato GeneChip array with probe sets to interrogate over 22,000 t...
متن کامل